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2.3 Left derived functors

Let A and B be abelian categories. Let R-Fun(A,B) and §-Hom(A, B) be
the category of right exact additive functors and the category of homological
d-functors between A and B respectively. There is a functor

5-Hom(A, B) — R-Fun(A, B)
(T3)izo0 — To.
We now want to construct a functor that goes in the opposite direction
R-Fun(A, B) — §-Hom(A, B),

that sends right exact functors to universal homological d-functors. To this end,
we will assume that A has enough projectives.

Definition 2.18. Let .4 and B be abelian categories and assume that A has
enough projectives. Let F' : A — B be an additive right exact functor and let
A be an object in A. Fix a projective resolution P — A and define

For any morphism § : A — A’ in A, take projective resolutions P — A and
P’ — A’. By the comparison Lemma, there is a lift of §, that is unique up to
homotopy

Py A 0
I
P} A 0.

Hence, by applying F' to the whole diagram, we get a lift of F'§ that is also
unique up to homotopy. This induces a morphism

This defines a functor called the i-th left derived functor of F.

Our next goal is to show that L;F is indeed a well-defined additive functor,
under the same hypotheses.



Lemma 2.19. Let A be an object in A. The object L;F(A) is well-defined, up
to a canonical isomorphism.

Proof. We will show that L;F(A) does not depend on the choice of projec-
tive resolution. Let P — A and @ — A be projective resolutions. Denote by
L;F(—)p and L;F(—)qg the i-th left derived functor constructed using projec-
tive resolutions P and @) respectively. By the comparison Lemma, there are
morphisms f: P — @Q and g : Q — P lifting the identity of A. Moreover, the
identity idp : P — P is also a lift of the id 4. The situation is illustrated in the
following diagram, where the two squares are commutative:

P——A

lf lidA

idp| Q —— A

b e

P—— A

The comparison Lemma implies that any two lifts must be homotopic. Hence,
we get
go f = idP7
since g o f is also a lift of the identity. This implies
FgOFfZFidp :ide.

Thus,
LzF(ldA)p o LZF(ldA)Q - idLiF(A)Q'

A symmetrical argument shows that L; F'(ida)goL; F'(ida)p = idp, p(a),, which
concludes the proof. O

Lemma 2.20. Let f: A— A’ be a morphism in A. The morphism
1s well-defined.

Proof. Take projective resolutions P and P’ of A and A’ respectively. Since two
lifts of f are homotopic they must induce the same morphism on homology. [

Proposition 2.21. Fach L;F is an additive functor.

Proof. Let A be an object in A and let P — A be a projective resolution. Since
idp is a lift of id 4, we must have

LiF(ida) = idp, p(a)-



Now consider morphisms f : A — A’ and g : A’ — A” and chain maps f,g
lifting f and g respectively (for some chosen projective resolutions). Since go f
is a lift of g o f we can compute

LiF(go f) = HF(go f) = HiF(3) o H;F(f) = LiF(g) o LiF (f).

Now let f1, f2: A — A’ be two morphisms with lifts f! and f2 respectively. As
the sum f! + f2 is a lift of f' + f2, we deduce similarly that

LiF(f' + f%) = LiF (f') + LiF (7). L

Theorem 2.22. Let A and B be abelian categories, where A has enough pro-
jectives. Let F' : A — B be an additive right exact functor. The left derived
functors (LiF);>0 form a homological §-functor.

Proof. Let
0—-A —-A—-A4"—=0

be a short exact sequence in A and let P' — A’, P’ — A” be projective
resolutions. By the Horseshoe Lemma there is a projective resolution P — A
such that the sequence

0P —-P—-P' -0

is split exact. Since F' is additive, the sequence
0— F(P')— F(P)— F(P") -0,
is also split exact. Taking the long exact sequence in homology we get
oo Ly i1 F(A)) = Ly F(A) = Ly F(A”) 3 L,F(A)) = L,F(A) — -+

This proves the existence of a long exact sequence. Now we need to show the
naturality of the connecting morphisms. Consider the diagram

0 P P P
e e
0 Al A A" 0
f/ J{ f f// J{
0 Q' Q Q"
O e
0 B’ ‘5 B 15 B” 0,

where the front of the diagram is given and the two front squares commutes,
e€:P A, :P'"—- A" n:Q — B and n’: Q" — B" are any projective
resolutions, € : P — A, n : Q — B are given by the Horseshoe Lemma and



F': P — @Q, F":P'— Q' are lifts of f' and f” respectively. We will
construct F': P — ( such that

0 P’ P P 0

RN

0 Q' Q Q" 0

commutes. Remember that P, = P, & P/ and Q,, = Q), ® Q! for every n € N
by the Horseshoe Lemma. Hence we can define

F,:PleP'—Q,eqQ!

F,
0 F// bl

where 7, : P/ — @Q!, will be defined inductively. For F to be a lifting of f we
must have nFy — fe = 0. Denote by Ap and Ag the restrictions of € and 71 to
P} and @ respectively. Then the equality

by the matrix

Y0 = —Aofo + fAp

must hold. For more clarity, define gy := =g f’ + fAp. By diagram chasing,
one can see that mp o go = 0. Hence, since Hom (P}, —) is exact (as P} is
projective), there exists a map § : P}/ — B’ such that 150 = go. We can then
define vy to be a lift of g

1/
PO

oL

Q) —— B —— 0.

We now want to define +, for any n € N. Assume that there is a n € N such
that ~; is defined for every ¢ € {0,...,n—1}. For F to be a chain map, we must
have the equality

d A F’
wori=|( 2) (0 )

dF — F'd (d"y—'yd” AR — F')\')
= 0 d'F" — F"d"’ =0,

where [, -] is the matrix commutator. Since both F’ and F” are chain maps,
the only condition that v, must satisfy is

d' v =Yn1d” — M E, + F'_ A,



Define g, := vn—1d”" — M\ F), + F/,_1An. Using diagram chasing, one can show
that d’'g, = 0. Since Q' is exact, g, factors through a map 8 : P — d'(Q}).
Hence we can define +,, to be a lift of

/!
P’I’L

>l

@, —— d(@Q,) — 0.
This concludes the proof. O

Before proving our next result, we will need to briefly discuss the notion of
pullback.

Definition 2.23. Let A be an abelian category andlet f : B — A, g: C — A
be morphisms. Consider the morphism

o= (f,—g9): B&C = A,

induced by the universal property of the coproduct applied to f and —g. The
pullback of f and g is defined to be the kernel P = ker(p), with induced mor-
phisms P — B and P — C that make the diagram

P——B

[

c—25 4

commutes. The key property used in the following proof that will not be dis-
cussed here is that if f is an epimorphism, so is the morphism P — C. Similarly,
if g is an epimorphism, so is the morphism P — B.

Theorem 2.24. Let A and B be abelian categories. Let (L;);>o be a homological
d-functor from A to B and assume that for all objects A in A and for all i >0
there is an epimorphism u : P — A such that L;(u) = 0. Then (L;);>0 1
universal.

Remark 2.25. In particular, if A has enough projectives, any left derived
functor is universal. One can take P projective with an epimorphism u : P — A.
Since L;(P) = 0, the map L;(P) — L;F(A) has to be the zero map.

Proof. Let (T})i>o0 be another homological d-functor and let ¢ : To — Lo be a
natural transformation. We construct for every n > 0 a natural transformation
on : T, — L, by induction. Suppose that there is some n € N such that we
constructed ¢; : T; — L; for every i € {0,...,n — 1}. Let A be an object in A.
By assumption, we can choose a short exact sequence

0—-K—P—A—0,



with P — A as in the statement. Consider the diagram with exact rows

To(A) —2— T, _1(K) —— T,_1(P)

l@n—l l‘Pn—l

Lo(P) —2% L,(A) —— L, _1(K) —— L,_1(P).

Using Freyd-Mitchell, we can define ¢, : T,(A) — L,(A) on elements. Let
a € T,(A). By the commutativity of the right square and exactness of the top
row we have

1m0 ¢n-106(a)=pn_10€0d(a)=0.
By exactness of the bottom row, ¢,_1 o §(a) is in the image of ¢ and we can
define

enla) i= 17 0 pu_y 0 8(a).

Moreover, one can show that this map is the unique map making the above
diagram commute. Let us assume for now that ¢, is well-defined (this will
make sense later). Let f: A — A be a morphism and consider the pullback

P —— P
Co
A/
|1
P—— A,
where the map P — A’ is an epimorphism given by the assumption. Notice

that the map P’ — P is an epimorphism as P — A is an epimorphism. Thus
we get a morphism of short exact sequences

0 K’ P’ A 0
L]
0 K P A 0.

Asboth (L;);>0 and (T3);>0 are homological d-functors, each small quadrilateral
commutes in the following diagram:

Tn(f)
x /
T 1(K') ———— T,,_1(K)
on(A”) J/Son—l l‘ﬂnfl en(A)

T (A) Ta(A)




Thus, one can see by diagram chasing that the following holds

50 La(f) 0 on(A') = 50 pu(A) 0 Tu(f).

Since ¢ : Ly, (A) — L,_1(K) is monic, we can cancel the above on the left to see
the naturality of ¢,,. By taking A = A" and f = id 4 this also shows that ¢, (A)
does not depend on the choice of P, which shows that it is well-defined.

We now want to show that ¢,, commutes with §,,. Let
0-A =2A-4">0

be a short exact sequence. Let P — A and P — A" be epimorphisms given by
the assumption. Similarly as before, the pullback

Pl P
|- |
P— A — A"

yields a morphism of short exact sequences

O K// P// A// O
J{g J/ J{idA”
0 A’ A A" 0.

Thus, we get another commutative diagram

To(A") —s T (K™Y 29 1 (4

J{Son J,"D717 1 prnfl

Lo(A") — Lo (K") 29 1,14,
where the right square commutes by naturality of ¢,_1 and the left square
commutes by construction of ¢,,. Since (T;);>0 and (L;);>o are both homological
d-functors and by construction of the above morphism of short exact sequences,
the horizontal composites are their respective 6 maps. This yields the desired
commutative relation between ¢ and . O

2.4 Injective Resolutions

Definition 2.26. An object I in an abelian category A is injective if for any
monic f : A — B and any morphism « : A — I, there exists a morphism
B : B — I such that a« = o f:



The following proposition is immediate and thus, given without proof.

Proposition 2.27. Let A be an abelian category and let I be an object in A.
Then, I is injective in A if and only if I is projective in A°P.

Corollary 2.28. Let A be an abelian category and let I be an object in A.
Then, I is injective if and only if the functor Hom 4(—,I) is exact.

From this proposition, one can dualize several definitions and results from the
projective context. For example, we say that an abelian category A has enough
injectives if for every object A in A there is a monic A — I for some injective
object I in A. Similarly, there is a version of the comparison Lemma in the
injective context. Moreover, one has the following criterion for the category of
right R-modules:

Proposition 2.29 (Baer’s Criterion). A right R-module E is injective if and
only if for every right ideal J C R, every map J — E can be extended to a map
R—E.

Proof. The proof is omitted as it is typically done in a commutative algebra
course. O

We now wish to show that the category R-mod has enough injectives. A first
step towards this result is the following important example.

Example 2.30. By Baer’s criterion, the abelian group Q/Z is injective, see
Exercise 6.1.

Lemma 2.31. Let M be a R-module and let A be an abelian group. The canon-
ical morphism

7 : Homap(M, A) = Homp (M, Homap (R, A)),
defined for any m € M by

7f(m): R— A
r— f(mr),

18 an isomorphism.

Proof. The inverse is given by

7 : Homp(M,Homap (R, A)) - Homap (M, A),

where
n(g): M — A
m— g(m)(1).
It is easy to check that these two maps are mutual inverses. O



Proposition 2.32. Let R : B — A be an additive functor that is right adjoint
to some exact functor. Then, for any injective object I in B, the object R(I) is
also injective.

Proof. Denote by L : A — B the left adjoint to R. It suffices to show that
Hom4(—, R(I)) is exact. Given a monic f: A — A’ in A, the diagram

Hom 4(A’, R(I)) —— Hom4(A, R(I))

I L

Homp(L(A’), I) — Homg(L(A), I)

commutes. Since L is exact and I is injective, the bottom map is surjective.
Hence, the top map is also surjective and we are done. O

Corollary 2.33. If I is an injective abelian group, then Homap(R,I) is an
injective R-module.
Proof. The functor Homayp (R, —) is right adjoint to the forgetful functor
U : R-mod — Ab. U
Proposition 2.34. The category R-mod has enough injectives.
Proof. Let M be a right R-module. Define
M= [ 1.
Hompg (M,1o)
where Iy = Homap (R, Q/Z) is injective, since Q/Z is injective. One can verify
that a product of injective objects is injective. Now define the morphism
t: M — I(M)
m H p(m).
p€Homp (M,Iy)

We show that it is an injective morphism. Let m € M \ {0} and consider the
subgroup generated by m. It satisfies either (m) = Z/nZ for some n > 1, or
(m) 2 Z. In the first case, define a morphism of abelian groups

(m) = Q/Z
1
m— —.
n
By the injectivity of Q/Z, it extends to a morphism of groups v : M — Q/Z.
Thus, through the identification Homap (M, Q/Z) = Hompg(M, Ij), we get an

element ¢ € Homp(M, Iy) such that ¢(m)(1) = y(m) # 0. In particular,
t(m) # 0. If (m) = Z, the exact same proof works by extending the morphism

(m) — Q/Z
This concludes the proof. O



