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2.3 Left derived functors

Let A and B be abelian categories. Let R-Fun(A,B) and δ-Hom(A,B) be
the category of right exact additive functors and the category of homological
δ-functors between A and B respectively. There is a functor

δ-Hom(A,B) → R-Fun(A,B)
(Ti)i≥0 7→ T0.

We now want to construct a functor that goes in the opposite direction

R-Fun(A,B) → δ-Hom(A,B),

that sends right exact functors to universal homological δ-functors. To this end,
we will assume that A has enough projectives.

Definition 2.18. Let A and B be abelian categories and assume that A has
enough projectives. Let F : A → B be an additive right exact functor and let
A be an object in A. Fix a projective resolution P → A and define

LiF (A) := Hi(FP ).

For any morphism δ : A → A′ in A, take projective resolutions P → A and
P ′ → A′. By the comparison Lemma, there is a lift of δ, that is unique up to
homotopy

· · · P0 A 0

· · · P ′
0 A′ 0.

δ

Hence, by applying F to the whole diagram, we get a lift of Fδ that is also
unique up to homotopy. This induces a morphism

Li(δ) : LiF (A) → LiF (A′).

This defines a functor called the i-th left derived functor of F .

Our next goal is to show that LiF is indeed a well-defined additive functor,
under the same hypotheses.
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Lemma 2.19. Let A be an object in A. The object LiF (A) is well-defined, up
to a canonical isomorphism.

Proof. We will show that LiF (A) does not depend on the choice of projec-
tive resolution. Let P → A and Q → A be projective resolutions. Denote by
LiF (−)P and LiF (−)Q the i-th left derived functor constructed using projec-
tive resolutions P and Q respectively. By the comparison Lemma, there are
morphisms f : P → Q and g : Q → P lifting the identity of A. Moreover, the
identity idP : P → P is also a lift of the idA. The situation is illustrated in the
following diagram, where the two squares are commutative:

P A

Q A

P A.

f

idP

idA

g idA

The comparison Lemma implies that any two lifts must be homotopic. Hence,
we get

g ◦ f ≃ idP ,

since g ◦ f is also a lift of the identity. This implies

Fg ◦ Ff ≃ F idP = idFP .

Thus,
LiF (idA)P ◦ LiF (idA)Q = idLiF (A)Q .

A symmetrical argument shows that LiF (idA)Q◦LiF (idA)P = idLiF (A)P , which
concludes the proof.

Lemma 2.20. Let f : A → A′ be a morphism in A. The morphism

LiF (f) : LiF (A) → LiF (A′)

is well-defined.

Proof. Take projective resolutions P and P ′ of A and A′ respectively. Since two
lifts of f are homotopic they must induce the same morphism on homology.

Proposition 2.21. Each LiF is an additive functor.

Proof. Let A be an object in A and let P → A be a projective resolution. Since
idP is a lift of idA, we must have

LiF (idA) = idLiF (A).
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Now consider morphisms f : A → A′ and g : A′ → A′′ and chain maps f̃ , g̃
lifting f and g respectively (for some chosen projective resolutions). Since g̃ ◦ f̃
is a lift of g ◦ f we can compute

LiF (g ◦ f) ∼= HiF (g̃ ◦ f̃) ∼= HiF (g̃) ◦HiF (f̃) ∼= LiF (g) ◦ LiF (f).

Now let f1, f2 : A → A′ be two morphisms with lifts f̃1 and f̃2 respectively. As
the sum f̃1 + f̃2 is a lift of f1 + f2, we deduce similarly that

LiF (f1 + f2) = LiF (f1) + LiF (f2).

Theorem 2.22. Let A and B be abelian categories, where A has enough pro-
jectives. Let F : A → B be an additive right exact functor. The left derived
functors (LiF )i≥0 form a homological δ-functor.

Proof. Let
0 → A′ → A → A′′ → 0

be a short exact sequence in A and let P ′ → A′, P ′′ → A′′ be projective
resolutions. By the Horseshoe Lemma there is a projective resolution P → A
such that the sequence

0 → P ′ → P → P ′′ → 0

is split exact. Since F is additive, the sequence

0 → F (P ′) → F (P ) → F (P ′′) → 0,

is also split exact. Taking the long exact sequence in homology we get

· · · → Ln+1F (A′) → Ln+1F (A) → Ln+1F (A′′)
∂→ LnF (A′) → LnF (A) → · · · .

This proves the existence of a long exact sequence. Now we need to show the
naturality of the connecting morphisms. Consider the diagram

0 P ′ P P ′′ 0

0 A′ A A′′ 0

0 Q′ Q Q′′ 0

0 B′ B B′′ 0,

F ′ F ′′
ϵ′ ϵ ϵ′′

ιB

f ′

η′

πB

f

η

f ′′

η′′

where the front of the diagram is given and the two front squares commutes,
ϵ′ : P ′ → A′, ϵ′′ : P ′′ → A′′, η′ : Q′ → B′ and η′′ : Q′′ → B′′ are any projective
resolutions, ϵ : P → A, η : Q → B are given by the Horseshoe Lemma and
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F ′ : P ′ → Q′, F ′′ : P ′′ → Q′′ are lifts of f ′ and f ′′ respectively. We will
construct F : P → Q such that

0 P ′ P P ′′ 0

0 Q′ Q Q′′ 0

F ′ F F ′′

commutes. Remember that Pn = P ′
n ⊕ P ′′

n and Qn = Q′
n ⊕Q′′

n for every n ∈ N
by the Horseshoe Lemma. Hence we can define

Fn : P ′
n ⊕ P ′′

n → Q′
n ⊕Q′′

n

by the matrix (
F ′
n γn
0 F ′′

n

)
,

where γn : P ′′
n → Q′

n will be defined inductively. For F to be a lifting of f we
must have ηF0 − fϵ = 0. Denote by λP and λQ the restrictions of ϵ and η to
P ′′
0 and Q′′

0 respectively. Then the equality

ιBη
′γ0 = −λQf

′′
0 + fλP

must hold. For more clarity, define g0 := −λQf
′′
0 + fλP . By diagram chasing,

one can see that πB ◦ g0 = 0. Hence, since Hom(P ′′
0 ,−) is exact (as P ′′

0 is
projective), there exists a map β : P ′′

0 → B′ such that ιB ◦β = g0. We can then
define γ0 to be a lift of β

P ′′
0

Q′
0 B′ 0.

γ0
β

η′

We now want to define γn for any n ∈ N. Assume that there is a n ∈ N such
that γi is defined for every i ∈ {0, . . . , n−1}. For F to be a chain map, we must
have the equality

dF − Fd =

[(
d′ λ
0 d′′

)
,

(
F ′ γ
0 F ′′

)]
=

(
d′F ′ − F ′d′ (d′γ − γd′′ + λF ′′ − F ′λ′)

0 d′′F ′′ − F ′′d′′

)
= 0,

where [·, ·] is the matrix commutator. Since both F ′ and F ′′ are chain maps,
the only condition that γn must satisfy is

d′γn = γn−1d
′′ − λnF

′
n + F ′′

n−1λn.
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Define gn := γn−1d
′′ − λnF

′
n + F ′

n−1λn. Using diagram chasing, one can show
that d′gn = 0. Since Q′ is exact, gn factors through a map β : P ′′

n → d′(Q′
n).

Hence we can define γn to be a lift of β

P ′′
n

Q′
n d′(Q′

n) 0.

γ0
β

η′

This concludes the proof.

Before proving our next result, we will need to briefly discuss the notion of
pullback.

Definition 2.23. Let A be an abelian category and let f : B → A, g : C → A
be morphisms. Consider the morphism

φ := (f,−g) : B ⊕ C → A,

induced by the universal property of the coproduct applied to f and −g. The
pullback of f and g is defined to be the kernel P = ker(φ), with induced mor-
phisms P → B and P → C that make the diagram

P B

C A

f

g

commutes. The key property used in the following proof that will not be dis-
cussed here is that if f is an epimorphism, so is the morphism P → C. Similarly,
if g is an epimorphism, so is the morphism P → B.

Theorem 2.24. Let A and B be abelian categories. Let (Li)i≥0 be a homological
δ-functor from A to B and assume that for all objects A in A and for all i > 0
there is an epimorphism u : P → A such that Li(u) = 0. Then (Li)i≥0 is
universal.

Remark 2.25. In particular, if A has enough projectives, any left derived
functor is universal. One can take P projective with an epimorphism u : P → A.
Since Li(P ) = 0, the map Li(P ) → LiF (A) has to be the zero map.

Proof. Let (Ti)i≥0 be another homological δ-functor and let φ0 : T0 → L0 be a
natural transformation. We construct for every n > 0 a natural transformation
φn : Tn → Ln by induction. Suppose that there is some n ∈ N such that we
constructed φi : Ti → Li for every i ∈ {0, . . . , n− 1}. Let A be an object in A.
By assumption, we can choose a short exact sequence

0 → K → P → A → 0,
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with P → A as in the statement. Consider the diagram with exact rows

Tn(A) Tn−1(K) Tn−1(P )

Ln(P ) Ln(A) Ln−1(K) Ln−1(P ).

δ ϵ

φn−1 φn−1

0 ι η

Using Freyd-Mitchell, we can define φn : Tn(A) → Ln(A) on elements. Let
a ∈ Tn(A). By the commutativity of the right square and exactness of the top
row we have

η ◦ φn−1 ◦ δ(a) = φn−1 ◦ ϵ ◦ δ(a) = 0.

By exactness of the bottom row, φn−1 ◦ δ(a) is in the image of ι and we can
define

φn(a) := ι−1 ◦ φn−1 ◦ δ(a).
Moreover, one can show that this map is the unique map making the above
diagram commute. Let us assume for now that φn is well-defined (this will
make sense later). Let f : A′ → A be a morphism and consider the pullback

P ′ P̃

A′

P A,

⌟

f

where the map P̃ → A′ is an epimorphism given by the assumption. Notice
that the map P ′ → P̃ is an epimorphism as P → A is an epimorphism. Thus
we get a morphism of short exact sequences

0 K ′ P ′ A′ 0

0 K P A 0.

As both (Li)i≥0 and (Ti)i≥0 are homological δ-functors, each small quadrilateral
commutes in the following diagram:

Tn(A
′) Tn(A)

Tn−1(K
′) Tn−1(K)

Ln−1(K
′) Ln−1(K)

Ln(A
′) Ln(A).

Tn(f)

φn(A
′)

δ

φn(A)

δ

φn−1 φn−1

Ln(f)

δ δ
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Thus, one can see by diagram chasing that the following holds

δ ◦ Ln(f) ◦ φn(A
′) = δ ◦ φn(A) ◦ Tn(f).

Since δ : Ln(A) → Ln−1(K) is monic, we can cancel the above on the left to see
the naturality of φn. By taking A = A′ and f = idA this also shows that φn(A)
does not depend on the choice of P , which shows that it is well-defined.

We now want to show that φn commutes with δn. Let

0 → A′ → A → A′′ → 0

be a short exact sequence. Let P → A and P̃ → A′′ be epimorphisms given by
the assumption. Similarly as before, the pullback

P ′′ P̃

P A A′′

⌟

yields a morphism of short exact sequences

0 K ′′ P ′′ A′′ 0

0 A′ A A′′ 0.

g idA′′

Thus, we get another commutative diagram

Tn(A
′′) Tn−1(K

′′) Tn−1(A
′)

Ln(A
′′) Ln−1(K

′′) Ln−1(A
′),

δ

φn

T (g)

φn−1 φn−1

δ L(g)

where the right square commutes by naturality of φn−1 and the left square
commutes by construction of φn. Since (Ti)i≥0 and (Li)i≥0 are both homological
δ-functors and by construction of the above morphism of short exact sequences,
the horizontal composites are their respective δ maps. This yields the desired
commutative relation between δ and φ.

2.4 Injective Resolutions

Definition 2.26. An object I in an abelian category A is injective if for any
monic f : A → B and any morphism α : A → I, there exists a morphism
β : B → I such that α = β ◦ f :

0 A B

I

f

α
β
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The following proposition is immediate and thus, given without proof.

Proposition 2.27. Let A be an abelian category and let I be an object in A.
Then, I is injective in A if and only if I is projective in Aop.

Corollary 2.28. Let A be an abelian category and let I be an object in A.
Then, I is injective if and only if the functor HomA(−, I) is exact.

From this proposition, one can dualize several definitions and results from the
projective context. For example, we say that an abelian category A has enough
injectives if for every object A in A there is a monic A → I for some injective
object I in A. Similarly, there is a version of the comparison Lemma in the
injective context. Moreover, one has the following criterion for the category of
right R-modules:

Proposition 2.29 (Baer’s Criterion). A right R-module E is injective if and
only if for every right ideal J ⊆ R, every map J → E can be extended to a map
R → E.

Proof. The proof is omitted as it is typically done in a commutative algebra
course.

We now wish to show that the category R-mod has enough injectives. A first
step towards this result is the following important example.

Example 2.30. By Baer’s criterion, the abelian group Q/Z is injective, see
Exercise 6.1.

Lemma 2.31. Let M be a R-module and let A be an abelian group. The canon-
ical morphism

τ : HomAb(M,A) → HomR(M,HomAb(R,A)),

defined for any m ∈ M by

τf(m) : R → A

r 7→ f(mr),

is an isomorphism.

Proof. The inverse is given by

η : HomR(M,HomAb(R,A)) → HomAb(M,A),

where

η(g) : M → A

m 7→ g(m)(1).

It is easy to check that these two maps are mutual inverses.
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Proposition 2.32. Let R : B → A be an additive functor that is right adjoint
to some exact functor. Then, for any injective object I in B, the object R(I) is
also injective.

Proof. Denote by L : A → B the left adjoint to R. It suffices to show that
HomA(−, R(I)) is exact. Given a monic f : A → A′ in A, the diagram

HomA(A
′, R(I)) HomA(A,R(I))

HomB(L(A
′), I) HomB(L(A), I)

∼= ∼=

commutes. Since L is exact and I is injective, the bottom map is surjective.
Hence, the top map is also surjective and we are done.

Corollary 2.33. If I is an injective abelian group, then HomAb(R, I) is an
injective R-module.

Proof. The functor HomAb(R,−) is right adjoint to the forgetful functor

U : R-mod → Ab.

Proposition 2.34. The category R-mod has enough injectives.

Proof. Let M be a right R-module. Define

I(M) :=
∏

HomR(M,I0)

I0,

where I0 = HomAb(R,Q/Z) is injective, since Q/Z is injective. One can verify
that a product of injective objects is injective. Now define the morphism

ι : M → I(M)

m 7→
∏

φ∈HomR(M,I0)

φ(m).

We show that it is an injective morphism. Let m ∈ M \ {0} and consider the
subgroup generated by m. It satisfies either ⟨m⟩ ∼= Z/nZ for some n > 1, or
⟨m⟩ ∼= Z. In the first case, define a morphism of abelian groups

⟨m⟩ → Q/Z

m 7→ 1

n
.

By the injectivity of Q/Z, it extends to a morphism of groups γ : M → Q/Z.
Thus, through the identification HomAb(M,Q/Z) ∼= HomR(M, I0), we get an
element φ ∈ HomR(M, I0) such that φ(m)(1) = γ(m) ̸= 0. In particular,
ι(m) ̸= 0. If ⟨m⟩ ∼= Z, the exact same proof works by extending the morphism

⟨m⟩ → Q/Z

m 7→ 1

2
.

This concludes the proof.
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