Homological Algebra Seminar Week 6

Fabien Donnet-Monay after the talk of Dév Vorburger and Benoît Cuenot

2.3 Left derived functors

Let \mathcal{A} and \mathcal{B} be abelian categories. Let $\mathbf{R}\text{-}\mathbf{Fun}(\mathcal{A},\mathcal{B})$ and $\delta\text{-}\mathbf{Hom}(\mathcal{A},\mathcal{B})$ be the category of right exact additive functors and the category of homological δ -functors between \mathcal{A} and \mathcal{B} respectively. There is a functor

$$\delta$$
-Hom $(\mathcal{A}, \mathcal{B}) \to \mathbf{R}$ -Fun $(\mathcal{A}, \mathcal{B})$
 $(T_i)_{i>0} \mapsto T_0.$

We now want to construct a functor that goes in the opposite direction

$$\mathbf{R}\text{-}\mathbf{Fun}(\mathcal{A},\mathcal{B}) \to \delta\text{-}\mathbf{Hom}(\mathcal{A},\mathcal{B}),$$

that sends right exact functors to universal homological δ -functors. To this end, we will assume that \mathcal{A} has enough projectives.

Definition 2.18. Let \mathcal{A} and \mathcal{B} be abelian categories and assume that \mathcal{A} has enough projectives. Let $F: \mathcal{A} \to \mathcal{B}$ be an additive right exact functor and let A be an object in \mathcal{A} . Fix a projective resolution $P \to A$ and define

$$L_iF(A) := H_i(FP).$$

For any morphism $\delta: A \to A'$ in \mathcal{A} , take projective resolutions $P \to A$ and $P' \to A'$. By the comparison Lemma, there is a lift of δ , that is unique up to homotopy

$$\begin{array}{cccc}
\cdots & \longrightarrow & P_0 & \longrightarrow & A & \longrightarrow & 0 \\
\downarrow & & & \downarrow \delta & & \\
\cdots & \longrightarrow & P'_0 & \longrightarrow & A' & \longrightarrow & 0.
\end{array}$$

Hence, by applying F to the whole diagram, we get a lift of $F\delta$ that is also unique up to homotopy. This induces a morphism

$$L_i(\delta): L_iF(A) \to L_iF(A').$$

This defines a functor called the i-th left derived functor of F.

Our next goal is to show that L_iF is indeed a well-defined additive functor, under the same hypotheses.

Lemma 2.19. Let A be an object in A. The object $L_iF(A)$ is well-defined, up to a canonical isomorphism.

Proof. We will show that $L_iF(A)$ does not depend on the choice of projective resolution. Let $P \to A$ and $Q \to A$ be projective resolutions. Denote by $L_iF(-)_P$ and $L_iF(-)_Q$ the *i*-th left derived functor constructed using projective resolutions P and Q respectively. By the comparison Lemma, there are morphisms $f: P \to Q$ and $g: Q \to P$ lifting the identity of A. Moreover, the identity $\mathrm{id}_P: P \to P$ is also a lift of the id_A . The situation is illustrated in the following diagram, where the two squares are commutative:

$$P \longrightarrow A$$

$$\downarrow id_{A}$$

$$Q \longrightarrow A$$

$$\downarrow g \qquad \qquad \downarrow id_{A}$$

$$P \longrightarrow A.$$

The comparison Lemma implies that any two lifts must be homotopic. Hence, we get

$$g \circ f \simeq \mathrm{id}_P$$
,

since $g \circ f$ is also a lift of the identity. This implies

$$Fq \circ Ff \simeq Fid_P = id_{FP}$$
.

Thus.

$$L_i F(\mathrm{id}_A)_P \circ L_i F(\mathrm{id}_A)_Q = \mathrm{id}_{L_i F(A)_Q}.$$

A symmetrical argument shows that $L_iF(\mathrm{id}_A)_Q\circ L_iF(\mathrm{id}_A)_P=\mathrm{id}_{L_iF(A)_P}$, which concludes the proof.

Lemma 2.20. Let $f: A \to A'$ be a morphism in A. The morphism

$$L_iF(f):L_iF(A)\to L_iF(A')$$

is well-defined.

Proof. Take projective resolutions P and P' of A and A' respectively. Since two lifts of f are homotopic they must induce the same morphism on homology. \square

Proposition 2.21. Each L_iF is an additive functor.

Proof. Let A be an object in \mathcal{A} and let $P \to A$ be a projective resolution. Since id_P is a lift of id_A , we must have

$$L_i F(\mathrm{id}_A) = \mathrm{id}_{L_i F(A)}.$$

Now consider morphisms $f:A\to A'$ and $g:A'\to A''$ and chain maps \tilde{f},\tilde{g} lifting f and g respectively (for some chosen projective resolutions). Since $\tilde{g}\circ\tilde{f}$ is a lift of $g\circ f$ we can compute

$$L_iF(g \circ f) \cong H_iF(\tilde{g} \circ \tilde{f}) \cong H_iF(\tilde{g}) \circ H_iF(\tilde{f}) \cong L_iF(g) \circ L_iF(f).$$

Now let $f^1, f^2: A \to A'$ be two morphisms with lifts \tilde{f}^1 and \tilde{f}^2 respectively. As the sum $\tilde{f}^1 + \tilde{f}^2$ is a lift of $f^1 + f^2$, we deduce similarly that

$$L_i F(f^1 + f^2) = L_i F(f^1) + L_i F(f^2).$$

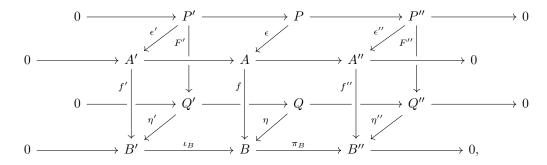
Theorem 2.22. Let A and B be abelian categories, where A has enough projectives. Let $F: A \to B$ be an additive right exact functor. The left derived functors $(L_iF)_{i>0}$ form a homological δ -functor.

Proof. Let

$$0 \to A' \to A \to A'' \to 0$$

be a short exact sequence in \mathcal{A} and let $P' \to A'$, $P'' \to A''$ be projective resolutions. By the Horseshoe Lemma there is a projective resolution $P \to A$ such that the sequence

$$0 \rightarrow P' \rightarrow P \rightarrow P'' \rightarrow 0$$


is split exact. Since F is additive, the sequence

$$0 \to F(P') \to F(P) \to F(P'') \to 0$$

is also split exact. Taking the long exact sequence in homology we get

$$\cdots \to L_{n+1}F(A') \to L_{n+1}F(A) \to L_{n+1}F(A'') \xrightarrow{\partial} L_nF(A') \to L_nF(A) \to \cdots$$

This proves the existence of a long exact sequence. Now we need to show the naturality of the connecting morphisms. Consider the diagram

where the front of the diagram is given and the two front squares commutes, $\epsilon': P' \to A', \; \epsilon'': P'' \to A'', \; \eta': Q' \to B'$ and $\eta'': Q'' \to B''$ are any projective resolutions, $\epsilon: P \to A, \; \eta: Q \to B$ are given by the Horseshoe Lemma and

 $F':P'\to Q',\,F'':P''\to Q''$ are lifts of f' and f'' respectively. We will construct $F:P\to Q$ such that

$$0 \longrightarrow P' \longrightarrow P \longrightarrow P'' \longrightarrow 0$$

$$\downarrow^{F'} \qquad \downarrow^{F} \qquad \downarrow^{F''}$$

$$0 \longrightarrow Q' \longrightarrow Q \longrightarrow Q'' \longrightarrow 0$$

commutes. Remember that $P_n = P'_n \oplus P''_n$ and $Q_n = Q'_n \oplus Q''_n$ for every $n \in \mathbb{N}$ by the Horseshoe Lemma. Hence we can define

$$F_n: P'_n \oplus P''_n \to Q'_n \oplus Q''_n$$

by the matrix

$$\begin{pmatrix} F_n' & \gamma_n \\ 0 & F_n'' \end{pmatrix},$$

where $\gamma_n: P_n'' \to Q_n'$ will be defined inductively. For F to be a lifting of f we must have $\eta F_0 - f \epsilon = 0$. Denote by λ_P and λ_Q the restrictions of ϵ and η to P_0'' and Q_0'' respectively. Then the equality

$$\iota_B \eta' \gamma_0 = -\lambda_O f_0'' + f \lambda_P$$

must hold. For more clarity, define $g_0 := -\lambda_Q f_0'' + f \lambda_P$. By diagram chasing, one can see that $\pi_B \circ g_0 = 0$. Hence, since $\operatorname{Hom}(P_0'', -)$ is exact (as P_0'' is projective), there exists a map $\beta : P_0'' \to B'$ such that $\iota_B \circ \beta = g_0$. We can then define γ_0 to be a lift of β

$$P_0''$$

$$\downarrow^{\gamma_0} \qquad \downarrow^{\beta}$$

$$Q_0' \xrightarrow{\eta'} B' \longrightarrow 0.$$

We now want to define γ_n for any $n \in \mathbb{N}$. Assume that there is a $n \in \mathbb{N}$ such that γ_i is defined for every $i \in \{0, \ldots, n-1\}$. For F to be a chain map, we must have the equality

$$\begin{split} dF - Fd &= \begin{bmatrix} \begin{pmatrix} d' & \lambda \\ 0 & d'' \end{pmatrix}, \begin{pmatrix} F' & \gamma \\ 0 & F'' \end{pmatrix} \end{bmatrix} \\ &= \begin{pmatrix} d'F' - F'd' & (d'\gamma - \gamma d'' + \lambda F'' - F'\lambda') \\ 0 & d''F'' - F''d'' \end{pmatrix} = 0, \end{split}$$

where $[\cdot, \cdot]$ is the matrix commutator. Since both F' and F'' are chain maps, the only condition that γ_n must satisfy is

$$d'\gamma_n = \gamma_{n-1}d'' - \lambda_n F_n' + F_{n-1}'' \lambda_n.$$

Define $g_n := \gamma_{n-1}d'' - \lambda_n F'_n + F'_{n-1}\lambda_n$. Using diagram chasing, one can show that $d'g_n = 0$. Since Q' is exact, g_n factors through a map $\beta : P''_n \to d'(Q'_n)$. Hence we can define γ_n to be a lift of β

$$P_n'' \downarrow^{\beta} \qquad \qquad \downarrow^{\beta} \qquad \qquad Q_n' \xrightarrow{\gamma_0'} d'(Q_n') \longrightarrow 0.$$

This concludes the proof.

Before proving our next result, we will need to briefly discuss the notion of pullback.

Definition 2.23. Let \mathcal{A} be an abelian category and let $f: B \to A, g: C \to A$ be morphisms. Consider the morphism

$$\varphi := (f, -g) : B \oplus C \to A,$$

induced by the universal property of the coproduct applied to f and -g. The pullback of f and g is defined to be the kernel $P = \ker(\varphi)$, with induced morphisms $P \to B$ and $P \to C$ that make the diagram

$$P \longrightarrow B$$

$$\downarrow \qquad \qquad \downarrow f$$

$$C \stackrel{g}{\longrightarrow} A$$

commutes. The key property used in the following proof that will not be discussed here is that if f is an epimorphism, so is the morphism $P \to C$. Similarly, if g is an epimorphism, so is the morphism $P \to B$.

Theorem 2.24. Let A and B be abelian categories. Let $(L_i)_{i\geq 0}$ be a homological δ -functor from A to B and assume that for all objects A in A and for all i>0 there is an epimorphism $u:P\to A$ such that $L_i(u)=0$. Then $(L_i)_{i\geq 0}$ is universal.

Remark 2.25. In particular, if \mathcal{A} has enough projectives, any left derived functor is universal. One can take P projective with an epimorphism $u: P \to A$. Since $L_i(P) = 0$, the map $L_i(P) \to L_iF(A)$ has to be the zero map.

Proof. Let $(T_i)_{i\geq 0}$ be another homological δ -functor and let $\varphi_0: T_0 \to L_0$ be a natural transformation. We construct for every n>0 a natural transformation $\varphi_n: T_n \to L_n$ by induction. Suppose that there is some $n \in \mathbb{N}$ such that we constructed $\varphi_i: T_i \to L_i$ for every $i \in \{0, \ldots, n-1\}$. Let A be an object in A. By assumption, we can choose a short exact sequence

$$0 \to K \to P \to A \to 0$$
,

with $P \to A$ as in the statement. Consider the diagram with exact rows

$$T_n(A) \xrightarrow{\delta} T_{n-1}(K) \xrightarrow{\epsilon} T_{n-1}(P)$$

$$\downarrow^{\varphi_{n-1}} \qquad \downarrow^{\varphi_{n-1}}$$

$$L_n(P) \xrightarrow{0} L_n(A) \xrightarrow{\iota} L_{n-1}(K) \xrightarrow{\eta} L_{n-1}(P).$$

Using Freyd-Mitchell, we can define $\varphi_n: T_n(A) \to L_n(A)$ on elements. Let $a \in T_n(A)$. By the commutativity of the right square and exactness of the top row we have

$$\eta \circ \varphi_{n-1} \circ \delta(a) = \varphi_{n-1} \circ \epsilon \circ \delta(a) = 0.$$

By exactness of the bottom row, $\varphi_{n-1} \circ \delta(a)$ is in the image of ι and we can define

$$\varphi_n(a) := \iota^{-1} \circ \varphi_{n-1} \circ \delta(a).$$

Moreover, one can show that this map is the unique map making the above diagram commute. Let us assume for now that φ_n is well-defined (this will make sense later). Let $f: A' \to A$ be a morphism and consider the pullback

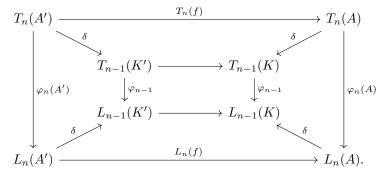
$$P' \longrightarrow \widetilde{P}$$

$$\downarrow \qquad \qquad \downarrow$$

$$A'$$

$$\downarrow \qquad \qquad \downarrow$$

$$P \longrightarrow A,$$


where the map $\widetilde{P} \to A'$ is an epimorphism given by the assumption. Notice that the map $P' \to \widetilde{P}$ is an epimorphism as $P \to A$ is an epimorphism. Thus we get a morphism of short exact sequences

$$0 \longrightarrow K' \longrightarrow P' \longrightarrow A' \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow K \longrightarrow P \longrightarrow A \longrightarrow 0.$$

As both $(L_i)_{i\geq 0}$ and $(T_i)_{i\geq 0}$ are homological δ -functors, each small quadrilateral commutes in the following diagram:

Thus, one can see by diagram chasing that the following holds

$$\delta \circ L_n(f) \circ \varphi_n(A') = \delta \circ \varphi_n(A) \circ T_n(f).$$

Since $\delta: L_n(A) \to L_{n-1}(K)$ is monic, we can cancel the above on the left to see the naturality of φ_n . By taking A = A' and $f = \mathrm{id}_A$ this also shows that $\varphi_n(A)$ does not depend on the choice of P, which shows that it is well-defined.

We now want to show that φ_n commutes with δ_n . Let

$$0 \to A' \to A \to A'' \to 0$$

be a short exact sequence. Let $P \to A$ and $\widetilde{P} \to A''$ be epimorphisms given by the assumption. Similarly as before, the pullback

$$P'' \xrightarrow{\longrightarrow} \widetilde{P}$$

$$\downarrow \qquad \qquad \downarrow$$

$$P \xrightarrow{\longrightarrow} A \xrightarrow{\longrightarrow} A''$$

yields a morphism of short exact sequences

Thus, we get another commutative diagram

$$T_{n}(A'') \xrightarrow{\delta} T_{n-1}(K'') \xrightarrow{T(g)} T_{n-1}(A')$$

$$\downarrow^{\varphi_{n}} \qquad \qquad \downarrow^{\varphi_{n-1}} \qquad \downarrow^{\varphi_{n-1}}$$

$$L_{n}(A'') \xrightarrow{\delta} L_{n-1}(K'') \xrightarrow{L(g)} L_{n-1}(A'),$$

where the right square commutes by naturality of φ_{n-1} and the left square commutes by construction of φ_n . Since $(T_i)_{i\geq 0}$ and $(L_i)_{i\geq 0}$ are both homological δ -functors and by construction of the above morphism of short exact sequences, the horizontal composites are their respective δ maps. This yields the desired commutative relation between δ and φ .

2.4 Injective Resolutions

Definition 2.26. An object I in an abelian category A is *injective* if for any monic $f:A\to B$ and any morphism $\alpha:A\to I$, there exists a morphism $\beta:B\to I$ such that $\alpha=\beta\circ f$:

The following proposition is immediate and thus, given without proof.

Proposition 2.27. Let A be an abelian category and let I be an object in A. Then, I is injective in A if and only if I is projective in A^{op} .

Corollary 2.28. Let A be an abelian category and let I be an object in A. Then, I is injective if and only if the functor $\text{Hom}_{A}(-,I)$ is exact.

From this proposition, one can dualize several definitions and results from the projective context. For example, we say that an abelian category \mathcal{A} has enough injectives if for every object A in \mathcal{A} there is a monic $A \to I$ for some injective object I in \mathcal{A} . Similarly, there is a version of the comparison Lemma in the injective context. Moreover, one has the following criterion for the category of right R-modules:

Proposition 2.29 (Baer's Criterion). A right R-module E is injective if and only if for every right ideal $J \subseteq R$, every map $J \to E$ can be extended to a map $R \to E$.

Proof. The proof is omitted as it is typically done in a commutative algebra course. $\hfill\Box$

We now wish to show that the category R-mod has enough injectives. A first step towards this result is the following important example.

Example 2.30. By Baer's criterion, the abelian group \mathbb{Q}/\mathbb{Z} is injective, see Exercise 6.1.

Lemma 2.31. Let M be a R-module and let A be an abelian group. The canonical morphism

$$\tau: \operatorname{Hom}_{\mathbf{Ab}}(M, A) \to \operatorname{Hom}_{R}(M, \operatorname{Hom}_{\mathbf{Ab}}(R, A)),$$

defined for any $m \in M$ by

$$\tau f(m): R \to A$$

$$r \mapsto f(mr),$$

is an isomorphism.

Proof. The inverse is given by

$$\eta: \operatorname{Hom}_R(M, \operatorname{Hom}_{\mathbf{Ab}}(R, A)) \to \operatorname{Hom}_{\mathbf{Ab}}(M, A),$$

where

$$\eta(g): M \to A$$

$$m \mapsto g(m)(1).$$

It is easy to check that these two maps are mutual inverses.

Proposition 2.32. Let $R: \mathcal{B} \to \mathcal{A}$ be an additive functor that is right adjoint to some exact functor. Then, for any injective object I in \mathcal{B} , the object R(I) is also injective.

Proof. Denote by $L: \mathcal{A} \to \mathcal{B}$ the left adjoint to R. It suffices to show that $\operatorname{Hom}_{\mathcal{A}}(-,R(I))$ is exact. Given a monic $f:A\to A'$ in \mathcal{A} , the diagram

$$\operatorname{Hom}_{\mathcal{A}}(A',R(I)) \longrightarrow \operatorname{Hom}_{\mathcal{A}}(A,R(I))$$

$$\downarrow \cong \qquad \qquad \downarrow \cong$$
 $\operatorname{Hom}_{\mathcal{B}}(L(A'),I) \longrightarrow \operatorname{Hom}_{\mathcal{B}}(L(A),I)$

commutes. Since L is exact and I is injective, the bottom map is surjective. Hence, the top map is also surjective and we are done.

Corollary 2.33. If I is an injective abelian group, then $\operatorname{Hom}_{\mathbf{Ab}}(R,I)$ is an injective R-module.

Proof. The functor $Hom_{\mathbf{Ab}}(R, -)$ is right adjoint to the forgetful functor

$$U: R\text{-}\mathbf{mod} \to \mathbf{Ab}.$$

Proposition 2.34. The category R-mod has enough injectives.

Proof. Let M be a right R-module. Define

$$I(M) := \prod_{\operatorname{Hom}_R(M,I_0)} I_0,$$

where $I_0 = \operatorname{Hom}_{\mathbf{Ab}}(\mathbb{R}, \mathbb{Q}/\mathbb{Z})$ is injective, since \mathbb{Q}/\mathbb{Z} is injective. One can verify that a product of injective objects is injective. Now define the morphism

$$m \mapsto \prod_{\varphi \in \operatorname{Hom}_{R}(M, I_{0})} \varphi(m).$$

We show that it is an injective morphism. Let $m \in M \setminus \{0\}$ and consider the subgroup generated by m. It satisfies either $\langle m \rangle \cong \mathbb{Z}/n\mathbb{Z}$ for some n > 1, or $\langle m \rangle \cong \mathbb{Z}$. In the first case, define a morphism of abelian groups

$$\langle m \rangle \to \mathbb{Q}/\mathbb{Z}$$

 $m \mapsto \frac{1}{n}$.

By the injectivity of \mathbb{Q}/\mathbb{Z} , it extends to a morphism of groups $\gamma: M \to \mathbb{Q}/\mathbb{Z}$. Thus, through the identification $\operatorname{Hom}_{\mathbf{Ab}}(M,\mathbb{Q}/\mathbb{Z}) \cong \operatorname{Hom}_R(M,I_0)$, we get an element $\varphi \in \operatorname{Hom}_R(M,I_0)$ such that $\varphi(m)(1) = \gamma(m) \neq 0$. In particular, $\iota(m) \neq 0$. If $\langle m \rangle \cong \mathbb{Z}$, the exact same proof works by extending the morphism

$$\langle m \rangle \to \mathbb{Q}/\mathbb{Z}$$
$$m \mapsto \frac{1}{2}.$$

This concludes the proof.